
 - 75 - 

Chapter 5. Wave Properties of Matter 
 

Notes: 
• Most of the material in this chapter is taken from Thornton and Rex, Chapter 5, 

and “The Feynman Lectures on Physics – Vol. I” by R. P. Feynman, R. B. 
Leighton, and M. Sands, Chapter 37 (1963, Addison-Wesley). 

5.1 The Wave Character of Matter 
The road that led to the advent Bohr’s atomic model was sparked by a series of bold ideas 
and discoveries that allowed physicist to make significant leaps in their interpretation of 
experimental data and understanding of the microscopic world. As we have seen, it all 
started with Planck’s quantization idea to solve the blackbody radiation problem, 
followed by Einstein’s theory of the particle-like behaviour of light to explain the 
photoelectric effect, and then Bohr’s radical view of the atom with the introduction of 
stationary states and the quantization of the electron’s orbital angular momentum. In the 
years that followed not only was the quantum nature of the atom gaining in acceptance, 
but the wave-particle duality of radiation, introduced by Einstein, was also firmly 
established. Indeed, further evidence was provided by the confirmation that X-rays, 
which behaved like particles in Compton scattering, were just a shorter (than light) 
wavelength realization of electromagnetic radiation. This was established with their 
diffraction through crystalline structures, which provided the right aperture sizes for these 
short wavelengths (approximately 10−11 −10−8m ). 
 
It should therefore not be too surprising that the next major step forward came with 
another bold and revolutionary idea, this time provided the French physicist Louis V. de 
Broglie (1892-1987). Being fully aware of the pioneering work of Einstein on the 
photoelectric effect, de Broglie extended the notion of wave-particle duality to matter. In 
a nutshell he postulated that just as a particle (the photon) of energy E = hc λ  is ascribed 
to electromagnetic radiation of wavelength λ  a massive particle such as the electron is 
assigned a de Broglie wavelength 
 

 λ = h
p
,   (5.1) 

 
with p  the particle’s momentum. It is important to realize that the attribution of a 
wavelength to a massive particle implies that it should behave as a wave under some 
conditions. For example, it should be possible to verify this wavelike behaviour when 
performing a diffraction experiment. Of course, there was no experimental evidence of 
any sort at the time to justify such an assertion; de Broglie’s proposition was bold indeed.  
 
To understand how a massive particle could exhibit wavelike properties, or even better, 
how a wave could “behave” as a particle we must first review the notions of phase and 
group velocities. 
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5.1.1 Phase and Group Velocities   
We already know from the material covered in Section 1.1.2 of Chapter 1 that the 
solution to the one-dimensional wave equation 
 

 ∂2ψ 1

∂x2
− 1
vp
2
∂2ψ 1

∂t 2
= 0   (5.2) 

 
is of the type 
 
 ψ 1 x,t( ) = A1 cos k1x −ω1t( ),   (5.3) 
 
when ω1 = k1vp . It should be clear, however, that any other similar functions with 
potentially different values for the wave number and frequency would also satisfy this 
equation. For example, two waves ψ 1  and ψ 2  could combine to give 
 

 

ψ x,t( ) =ψ 1 x,t( ) +ψ 2 x,t( )
= Acos k1x −ω1t( ) + Acos k2x −ω 2t( )
= 2Acos Δk

2
x − Δω

2
t⎛

⎝⎜
⎞
⎠⎟ cos

Σk
2
x − Σω

2
t⎛

⎝⎜
⎞
⎠⎟ ,

  (5.4) 

 
where we used 2cos a( )cos b( ) = cos a − b( ) + cos a + b( )  with Δk = k1 − k2 , Σk = k1 + k2 , 
Δω =ω1 −ω 2 , and Σω =ω1 +ω 2 . If we consider the case where the differences Δk  and 
Δω  are much smaller than the respective summations Σk  and Σω , then we find that the 
resulting wave is composed as a “carrier” cos Σk x − Σω t( ) 2⎡⎣ ⎤⎦ , which varies rapidly 

with time and position, multiplied by a slowly varying “envelope” cos Δk x − Δω t( ) 2⎡⎣ ⎤⎦ . 
An example of this is shown in Figure 1. We find in general that the carrier travels at the 
phase velocity 
 

Figure 1 – An example of the sum of two 
waves that can be described as the product 
of an envelope and a carrier. 
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 vp =
Σω
Σk

= ω1

k1
= ω 2

k2
,   (5.5) 

 
while the envelope travels at the so-called group velocity 
 

 vg =
Δω
Δk
,   (5.6) 

 
which is in general different from the phase velocity. Evidently, this process can be 
extended to an arbitrary number of waves. Before we do so, we will replace our cosine 
function with a complex exponential 
 
 e± jθ = cos θ( ) ± j sin θ( ),   (5.7) 
 
with j ≡ −1  the imaginary number. It is straightforward to verify that this function is 
also a solution of equation (5.2) when θ = kx −ωt . As we will see later on, the complex 
exponential is a fundamental function for the description of quantum mechanical systems.  
 
1We then generalize the solution of the wave equation for a discrete set of waves to the 
summation 
 
 ψ x,t( ) = Ane

j knx−ωnt( )

n
∑ ,   (5.8) 

 
which is known as the Fourier series of ψ x,t( ) . In the case of a continuum of waves 
equation (5.8) is replaced by the (inverse) Fourier transform, which we can write as 
 
 ψ x,t( ) = A k( )e j kx−ωt( ) dk

−∞

∞

∫   (5.9) 

 
when we allow the frequency to be a function of the wave number. Such functions 
ψ x,t( )  that consist of superposition of waves are commonly called wave packets.  
 
Now, let us write the following Taylor series 
 

 
 
ω k( ) =ω 0 +

dω
dk k0

k − k0( ) +  (5.10) 

 
where k0  and ω 0  are “center” or reference values. We can alternatively turn the problem 
around and evaluate the amplitudes A k( )  from ψ x,t( )  with (the Fourier transform of 

                                                
1 The material contained between equations (5.8) and (5.17) is mathematically advanced, 
and you will not be tested on it. 
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ψ x,t( ) ) 
 

 A k( ) = 1
2π

ψ x,0( )e− jkx dx
−∞

∞

∫ .   (5.11) 

 
Inserting equation (5.10) into (5.9) we have 
 

 

 

ψ x,t( )  e
j k0 dω dk( ) k0 −ω0
⎡
⎣⎢

⎤
⎦⎥
t

2π
A k( )e j x−t dω dk( ) k0

⎡
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⎤
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k
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−∞

∞

∫

ψ x − t dω
dk k0
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⎛

⎝⎜
⎞

⎠⎟
e
j k0 dω dk( ) k0 −ω0
⎡
⎣⎢

⎤
⎦⎥
t
.

  (5.12) 

 
It follows from this equation that, apart from the phase factor on the right, the initial wave 
located at x − t dω dk[ ] k0  when t = 0  travels, with its shape seemingly unaltered, at the 

group velocity  
 

 vg =
dω
dk k0

.  (5.13) 

 
to become the wave ψ x,t( )  at a later time t  at position x . Incidentally, we find that 
equation (5.13) is a generalization of equation (5.6).  
 
Example 
 
To make things clearer let us consider a wave packet that is highly localized in space 
 
 ψ x,t( ) =ϕ x( )e j k0x−ω0t( ),   (5.14) 
 
with the envelope 
 

 ϕ x( ) =
B, for x < Δx

0, for x > Δx.

⎧
⎨
⎪

⎩⎪
  (5.15) 

 
We now use equation (5.11) to calculate the “spectrum” associated with ψ x,t( )   
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A k( ) = 1
2π

ϕ x( )e jk0xe− jkx dx
−∞

∞

∫

= B
2π

e− j k−k0( )x dx
−Δx

Δx

∫

= 2B
2π

sin k − k0( )Δx⎡⎣ ⎤⎦
k − k0( ) .

  (5.16) 

 
Since the first zeros of A k( )  happen at k − k0 ≡ Δk = π Δx , we find the following 
relation 
 
  ΔkΔx 1.   (5.17) 
 
Equation (5.17) is a mathematical statement of the so-called wave-train uncertainty, 
which is also central to quantum mechanics.  

5.1.2 The de Broglie Waves  
The idea behind de Broglie’s proposition to assign a wavelike nature to massive particle 
rested on the hypothesis that, perhaps, it can be associated with a highly localized wave 
packet in space. For example, in our previous example we can think of the envelope 
ϕ x( )  as defining the shape and extent of a particle in space, which would be moving 
with the group velocity vg  according to equation (5.13) (i.e., given a dispersion relation 
specifying ω =ω k( ) ).  
 
Following de Broglie’s reasoning we assign to massive particles some of the same 
attributes that hold for electromagnetic waves (and photons) since we assume that they 
can also be described with waves. For example, considering the group velocity we write 
 

 

 

vg =
dω
dk

=
d ω( )
d k( )

= dE
dp
,

  (5.18) 

 
with E  and p  the energy and momentum, respectively. Evidently, this relation is 
verified for photons and we therefore enforce it for massive particle as well. The needed 
relation between these two quantities is found in special relativity through 
 
 E2 = p2c2 +m2c4 .  (5.19) 
 
We then have that 2EdE = 2pc2dp  and therefore 
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 vg =
pc2

E
.   (5.20) 

 
But we also know from special relativity, however, that 
 

 
E = γ mc2

p = γ mv,
  (5.21) 

 
with v = dx dt  the “classical” speed of the particle and γ = 1− v2 c2( )−1 2  the Lorentz 
factor. It follows that vg = v  and we find that idea of assigning a wave-particle duality to 
massive particle is consistent with special relativity. The particle can then be assign a 
wavelength through 
 

 

 

p = k

=  2π
λ

= h
λ
.

  (5.22) 

 
Since we know from diffraction theory that a wave will show interference behaviour 
when incident on slits of a grating of dimension comparable to its wavelength (see Prob. 
3 of the First Assignment), we should expect from de Broglie’s theory that the same 
would apply to a massive particle. Needless to say that such an expectation was very 
counterintuitive at the time he made this prediction.  
 
Exercises 
 
1. Calculate the de Broglie wavelength of (a) a tennis ball of mass 57 g travelling at 25 
m/s and (b) an electron with kinetic energy of 50 eV. 
 
Solution. 
 
We use equation (5.22) for these calculations. (a) For the tennis ball  
 

 λ = h
p
= 6.62 ×10−34 J ⋅s

0.057 kg ⋅25 m/s
= 4.7 ×10−34 m,   (5.23) 

 
and (b) for the electron 
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λ = h
p

= h
2mK

= hc
2 mc2( )K

= 1240 eV ⋅nm
2 ⋅511×103  eV ⋅50 eV

= 0.17 nm.

  (5.24) 

 
It should be clear from these numbers that, although there is little chance it could be 
possible to find or fabricate a slit or a grating sufficiently small to diffract a tennis ball, a 
50 eV electron should effectively interfere when passing through a crystal (as for X-rays) 
since the interatomic distance compares well to the corresponding de Broglie wavelength.   

5.1.3 Quantization of the Atomic Orbital Angular Momentum 
We saw in Chapter 3 that one of the fundamental postulates introduced by Bohr to 
explain the hydrogen atom was the notion that the orbital angular momentum of the 
electron on a stationary state was quantized to multiples of the Planck constant    (see the 
fourth postulate in Sec. 3.3). This postulate can easily be shown to be consistent the 
introduction of the de Broglie wavelength, if we assume that a stationary state can only 
be achieved when conditions necessary to obtain a standing wave are met.  
 
This is reasonable since a standing wave reflects a state that is, in a way, unchanging or 
stationary. For electromagnetic waves we know from our discussion of the blackbody in 
Chapter 2 (see Sec. 2.3.1) that a standing wave is made-up of two counter-propagating 
waves, when the length over which the waves are propagating is a multiple of the (half-) 
wavelength. For the electron matter wave (i.e., it is very important to realize that we are 
not talking about electromagnetic or acoustic waves) if we apply a similar condition 
 
 2πr = nλ,   (5.25) 
 
with r  the radius of the orbit and n  a positive integer, then inserting equation (5.22) for 
the wavelength we find 
 

 2πr = nh
p

  (5.26) 

 
or with L = r × p  for the angular momentum 
 
  L = n.   (5.27) 
 
We thus find that Bohr’s angular momentum quantization is encompassed within de 
Broglie’s postulate on the existence of matter waves.      
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Exercises 
 
2. (Ch. 5, Prob. 6, in Thornton and Rex.) Calculate the de Broglie wavelength of a typical 
nitrogen molecule on a hot summer day ( 37C ). Compare this with the diameter of the 
molecule (less than 1 nm). 
 
Solution. 
 
We know from out calculations leading to equation (1.47) in Chapter 1 that according to 
classical statistical mechanics the mean kinetic energy K  of a particle of mass m  at 
temperature T  equals 3kT 2 . If we choose vrms ≡ v2 , then 
 
 mvrms = 3mkT = 2.45 ×10−23kg ⋅m/s.   (5.28) 
 
As this is the value for the momentum, the de Broglie wavelength is 
 

 λ = h
mvrms

= 2.7 ×10−11m,   (5.29) 

 
which represents approximately 3% of the size of the molecule.   
 
3. (Ch. 5, Prob. 11, in Thornton and Rex.) Determine the de Broglie wavelength of a 
particle of mass m  and kinetic energy . Do this for both (a) a relativistic and (b) a 
nonrelativistic particle. 
 
Solution. 
 
We must first understand that the kinetic energy is defined relativistically such that the 
total energy is given by E = K +mc2 . This is justified by the expansion of the first of 
equations (5.21) with a Taylor series in v c( )2   
 

 

 

E = γ mc2

= mc2 1− v
c

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥

−1 2

= mc2 1+ 1
2

v
c

⎛
⎝⎜

⎞
⎠⎟
2

+
⎡

⎣
⎢

⎤

⎦
⎥

= mc2 + 1
2
mv2 +

  (5.30) 

 
In the weakly relativistic case we can write  K  mv

2 2 mc2  and we therefore find that 
 E  K +mc2 , which is in agreement with the aforementioned definition. But the fully 

K



 - 83 - 

relativistic equation for the (square of) energy can also be written as E2 = p2c2 +m2c4 , 
and we can write  
 

 

pc = E2 − mc2( )2⎡
⎣

⎤
⎦
1 2

= K +mc2( )2 − mc2( )2⎡
⎣

⎤
⎦
1 2

= K 2 + 2Kmc2⎡⎣ ⎤⎦
1 2
.

  (5.31) 

 
(a) Thus, for a relativistic particle the de Broglie wavelength is 
 

 λ = h
p
= hc

K 2 + 2Kmc2
.  (5.32) 

 
(b) For a nonrelativistic particle we have        
 

 

 

λ = hc
K 2 + 2Kmc2


hc
2Kmc2


h
2mK

.

  (5.33) 

5.1.4 Experimental Evidence for Matter Waves – Electron Scattering 
We already mentioned that diffraction of X-rays through crystalline structures had been 
important in establishing their wavelike properties. Because of the closeness in values for 
the separation between adjacent fundamental planes in a crystal, which act in a way 
similar to the slits in a grating, and the de Broglie wavelength of the electron, crystals are 
also perfectly suited to test the potential existence of matter waves.  
 
The diffraction equation needed to understand diffraction through crystals is very similar 

Figure 2 – The diffraction of waves off the 
adjacent planes of a crystalline structure. 
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to that derived in Prob. 3 of the first assignment when studying the diffraction of 
electromagnetic waves through a grating. The small difference between the two equations 
that characterize these processes can be discerned with Figure 2. We see that, just as for a 
grating, the outgoing (or reflected) waves in a crystal have an extra optical path nd sin θ( )  
depending on the position n  of the scattering plane (the upper most plane has n = 0  in 
the figure, the angle between the incident and scattered waves is 2θ , and the distance 
between adjacent planes is d ). However, it is also seen that the incident waves further 
acquire the same corresponding phase retardation, which therefore doubles the value of 
the extra optical path to 2nd sin θ( )  for a scattering off plane n . The equation that 
specifies the locations of maxima for crystalline diffraction differs accordingly from that 
for gratings (see equation (3.3) in the first assignment) such that 
 
 nλ = 2d sin θ( ),   (5.34) 
 
with n  an integer. Equation (5.34) is also refereed to as Bragg’s law.  
 
The wavelike nature of the electron was first made evident in 1925 from scattering 
measurements off large nickel crystals by Clinton J. Davisson (1881-1958) and Lester 
H. Germer (1896-1971) of Bell Telephone Laboratory. In their experiment, they were 
able to measure the angle of maximum diffracted intensity as a function of the incident 
electron’s kinetic energy (and therefore of the de Broglie wavelength through equation 
(5.32)). Their results were in almost perfect agreement with de Broglie’s prediction as 
they obtained λ = 0.165 nm  (compare with the calculations leading to equation (5.24)). 
Their results were soon corroborated by a series of experiments conducted by George P. 
Thomson (1892-1975), the son of J. J. Thomson who had previously discovered the 
electron.      

5.2 Wave-Particle Duality 
We are thus left with the seemingly contradicting picture where both radiation and 
particles can take on the character of a wave or that of a particle depending on the 
situation… But how can this be so? Why and how a physical entity (e.g., an electric field 
or an electron) can present both characters? This is a deep and important question about 
the nature of physics in general that is still debated. But we can bring some sort of sense 
to it by considering Young’s double-slit diffraction experiment. 
 
The general set-up for this experiment is shown in Figure 3, where waves are incident on 
a grating made of two narrow slits located some large distance away from a detector 
screen. When both slits are unobstructed an interference pattern is measured. This is 
readily calculated using the results of Prob. 3 in the first assignment when N = 2 . The 
intensity thus measured becomes 
 

 I12 θ( ) = I0
4
sin2 kd sin θ( )⎡⎣ ⎤⎦
sin2 kd sin θ( ) 2⎡⎣ ⎤⎦

,   (5.35) 
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with I0  the maximum intensity detected at θ = 0  (i.e., in the middle of the detector 
screen). This result is, of course, typical and is measured whenever the incident waves are 
electromagnetic in nature, for example. On the other hand, the broad and smooth profiles 
I1 θ( )  or I2 θ( )  are observed when slit 2 or 1 are, respectively, blocked. These intensities 
do not possess an interference pattern at all. In fact, it is important to realize that 
I12 θ( ) ≠ I1 θ( ) + I2 θ( )  but rather2 
 
 I12 θ( ) = I1 θ( ) + I2 θ( ) + 2 I1 θ( ) I2 θ( ) cos kd sin θ( )⎡⎣ ⎤⎦   (5.36) 
 
in general. Again, this is typical behaviour for a wave.   
 
We now ask the question as to what would a pre-de Broglie physicist have expected to 
result from these experiments when effected on particles? It is easier to first consider the 
case where one slit is covered at a time, when I1 θ( )  or I2 θ( )  are measured. The big 
difference from the previous experiment on waves is that with both slits unobstructed our 
physicist would not expect to obtain equation (5.36) but rather 
 
 I12 θ( ) = I1 θ( ) + I2 θ( ).   (5.37) 
 
Indeed, this is what one would measure today if the double-slit experiment were 
performed with incident macroscopic massive particles (e.g., bullets of some sort) instead 
of waves. Of course, we know from our previous discussion of the Davisson-Germer 
                                                
2 Equation (5.36) can be recovered from equation (5.35) by using equations (3.16) of 
Chapter 3 and multiplying both the numerator and denominator of equation (5.36) by 
1− cos kd sin θ( )⎡⎣ ⎤⎦  and setting I1 = I2 = I0 4  (since equation (5.35) assumes that I1  and 
I2  are constant and equal for any value of θ , which is approximately true when  θ 1 ).   

Figure 3 - Young’s double-slit experiment. Waves are 
incident on a grating made of two slits located some 
large distance away from a detector screen. When both 
slits are unobstructed an interference pattern (  
curve on the far-right) is measured, while broad 
intensity profiles are detected when one slit is blocked 
(  and  curves). 
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experiment that such expectations for elementary particles (e.g., electrons) will not be 
realized. Indeed, modern versions of the Young double-slit experiment give similar 
results for electromagnetic radiation or massive particles. Such an example is shown in 
Figure 4 where the interference pattern detected for a high flux of incident electrons is 
similar to what is measured with photons. This maybe counterintuitive or shocking, but 
that is the way nature is. Both electrons and photons exhibit wave and particle characters! 
But that is not all… 
 
The results of the Young’s double-slit experiment discussed so far and exemplified in 
Figure 4 all assume that a large number of electrons or photons (or whatever type particle 
chosen for the experiment) are impinging on the grating. Something interesting happens 
if the intensity of the incident wave is greatly reduce such that, say, only one photon (or 
electron) is detected every second or so. We may perhaps intuitively expect that the 
interference pattern of Figure 4 would still be detected at a correspondingly lower 
intensity. But this is not what is observed. Instead, the interference wave pattern is not 
measured at once but is built up as more and more particles are detected. That is, it is 
very important to note that in quantum mechanics one never measures waves, but only 
particles. As we will see later, although a quantum mechanical system (or a particle) can 
be interpreted as evolving like a wave, the outcome of an experiment will always yield a 
particle (e.g., a photon or an electron). Therefore in the case of Young’s double-slit 
experiment with a weak incident wave, the interference pattern will be similar to what 
would be observed with a strong incident wave but it would take a much longer time 
before becoming well defined on the detector screen. This phenomenon is made apparent 
in Figure 5. 
 
Furthermore, we also note that we can never predict where on the screen a particle will 
be detected. We can only assign a probability with which it may be measured at a given 
position on the screen. In the case of the Young’s double-slit experiment this probability 
is proportional to the intensity of the final interference wave pattern. 
 
The wave-particle duality is intrinsic to quantum mechanics and is such that one type of 
behaviour seems to exclude the other. The previous statement on the evolution of a 

Figure 4 – Result of a Young double-slit 
experiment on electrons. The wavelike 
character of the detected intensity is clear, 
in agreement with de Broglie’s theory. 
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system being represented by a wave and a measurement by the detection of a particle is 
such an example. It is also found, as we will soon discuss, that any attempt to determine, 
say, the position of a particle as it is evolving (as a wave) will invariably suppress any 
interference pattern. This is because the measurement of the position brings the particle 
aspect into play, as previously stated. Bohr has addressed this issue through his principle 
of complementarity, which states that: 
 
It is not possible to describe physical observables simultaneously in terms of particles 
and waves. 
 
By physical observables Bohr meant measurable quantities such as position, momentum, 
velocity, energy that are likely to be the result of an experiment.  
 
Exercises 
    
4. In the Young’s double-slit experiment 50 keV electrons impinged on slits of width 500 
nm separated by a distance of d = 2000 nm . The observation screen was located 
  = 350 mm  beyond the slit. What is the distance between the first two maxima? 
 
Solution. 
 
We know from equation (5.35) that the locations of maxima follow the relation 
 
 d sin θ( ) = nλ.   (5.38) 

Figure 5 – Computer simulation of Young’s double-slit experiment for light or electron 
where the incident wave is of very low intensity. The interference pattern builds up 
slowly with time as particles are detected. That is, one particle does not show the 
interference pattern but contributes to it with all the other particles measured.  
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The first maximum for n = 0  is at θ = 0 , while the second for n = 1  has 
 

 sin θ( ) = λ
d
.   (5.39) 

 
The de Broglie wavelength is given by equation (5.32) 
 

 

λ = h
p
= hc

K 2 + 2Kmc2

= 1240 eV ⋅nm

50,000 eV( )2 + 2 ⋅50,000 eV ⋅511,000 eV

= 5.36 ×10−3nm.

  (5.40) 

 
From equation (5.38) we then find 
 

 sin θ( ) = 5.36 ×10−3nm
2000 nm

= 2.68 ×10−6.   (5.41) 

 
Finally, the corresponding distance on the screen is 
 

 

 

y =  tan θ( )  θ
 350 mm ⋅2.68 ×10−6

 938 nm.
  (5.42) 

 
5. (Ch. 5, Prob. 35, in Thornton and Rex.) You want to design a Young’s double slit 
experiment that does not require magnification of the interference pattern in order to be 
seen. Let the two slits separated by d = 2000 nm . Assume that you can discriminate 
visually between maxima that are as little as y = 0.3 mm  apart. You have at your 
disposal a laboratory that allows the screen to be placed   = 80 cm  away from the slits. 
What energy electrons will you require? Do you think such low-energy electrons will 
represent a problem? Explain. 
 
Solution. 
 
Let us make the small angle approximation  tan θ( )  sin θ( )  θ , and therefore   
 

 
 
θ  y

= 0.3 mm

800 mm
= 3.75 ×10−4 ,   (5.43) 

 
and from equation (5.39) 
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  λ  dθ = 2000 nm ⋅3.75 ×10−4 = 0.75 nm.   (5.44) 
 
The momentum of the electrons is then 
 

 
  
p = h

λ
= hc
λc

= 1240 eV·nm
0.75 nm( )c = 1.653 keV/c,   (5.45) 

 
and their kinetic energy  
 

 

K = E −mc2

= p2c2 +mc2 −mc2

= 1.653 keV( )2 + 511 keV( )2 − 511 keV 
= 2.67 eV.

  (5.46) 

 
Such low energies will present problems, because low-energy electrons take longer to 
move through the region of the electric field that is needed to accelerate and put them in 
motion toward the slits. They will thus be more susceptible to suffer deflection by stray 
electric fields. 

5.3 The Heisenberg Inequality 
We have already seen in the example of the rectangular wave packet in Section 5.1.1 that 
there is an inherent uncertainty in the determination of the wavelength (or wave vector 
k = 2π λ ) of a wave when observed over a finite spatial extent. For the case of the 
rectangular wave packet we found that 
 
  Δk ⋅ Δx  π .   (5.47) 
 
In Problem 10 of the second assignment it will be shown that for a Gaussian wave packet 
Δk ⋅ Δx = 1 2 . A rigorous quantum mechanical analysis would show that value for the 
product of the uncertainties in wavenumber and position is a minimum, and we therefore 
write Δk ⋅ Δx ≥1 2 . 
 
Although equation (5.47) was derived for waves in general, we can readily apply it to 
quantum physics by combining it with equation (5.1) for the de Broglie wavelength such 
that 
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Δk ⋅ Δx = Δ 2π
λ

⎛
⎝⎜

⎞
⎠⎟ ⋅Δx

= Δ 2π p
h

⎛
⎝⎜

⎞
⎠⎟ ⋅Δx

= 1


Δp ⋅ Δx( ).

  (5.48) 

 
When considering the previous quantum mechanical result specifying the minimum value 
achievable for this product we can write the so-called Heisenberg inequality 
 

 
 
Δp ⋅ Δx ≥ 

2
.   (5.49) 

 
Equation is also commonly called the Heisenberg uncertainty principle. Although this 
last appellation may convey some sort of mythical aura, our previous analysis should 
make it clear that such inequality will apply whenever waves enter the picture. That is, 
the Heisenberg inequality is simply the wave train uncertainty applied to particles and 
waves generally. 
 
It is important to realize that equation (5.49) apply to the position and linear momentum 
in a given direction. That is, in the case considered here the uncertainties in momentum 
and position are both along the x-axis ; similar relations exist for the y  and z  directions. 
This inequality does not apply, however, when dealing with a position and linear 
momentum of different orientations. More precisely, there is no lower limit to the product 
of, say, Δpx ⋅ Δy  or Δpz ⋅ Δx ; both these products can be equal to zero. 
 
Finally, we note that the wave train uncertainty does not only apply to uncertainties in 
wave number and position but also to frequency and time. This will be easily understood 
by reconsidering the earlier example of the rectangular wave packet but by now 
observing it at a fixed position (instead of a given time) over and interval of time. That is, 
we consider the wave packet         
 
 ψ x,t( ) =ϕ t( )e j k0x−ω0t( ),   (5.50) 
 
with the envelope 
 

 ϕ t( ) =
B, for t < Δt
0, for t > Δt.

⎧
⎨
⎪

⎩⎪
  (5.51) 

 
There also exists a pair of Fourier transform between time and frequency defined with 
 



 - 91 - 

 
ψ x,t( ) = A ω( )e j kx−ωt( ) dω

−∞

∞

∫
A ω( ) = 1

2π
ψ 0,t( )e jωt dt

−∞

∞

∫ ,
  (5.52) 

 
which when going through the same type of calculations as before yields 
 

 A ω( ) = 2B
2π

sin ω −ω 0( )Δt⎡⎣ ⎤⎦
ω −ω 0( ) .   (5.53) 

 
We can therefore write  ω −ω 0 ≡ Δω  π Δt  and we once again recover the wave train 
uncertainty. Since we know from Planck, Einstein, and de Broglie that  E = ω , then we 
can write  ΔE ⋅ Δt  π  in this case, but in general 
 

 
 
ΔE ⋅ Δt ≥ 

2
.  (5.54) 

 
Exercises 
 
6. In the Young double-slit experiment we seek to determine through which slit the 
electrons responsible for the wave interference pattern go through. To do so, the 
experimenter sets up a radiation source incident on one of the two slits with the hope that 
a photon will scatter off an electron when it goes through the slit (see Figure 6). The 
detection, or the absence of detection, of a scattered photon would then inform us of 
which slit an electron detected on the screen would have gone through on its way to the 
detector. Use the Heisenberg inequality to show that the interference pattern will be made 
to vanish whenever such detection technique is used. 
 

Figure 6 – The set-up for determining through 
which slit do electrons pass in the Young’s 
double-slit experiment. 
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Solution. 
 
To be able to discern which slit an electron has gone through we must use photons with a 
wavelength short enough to allow us to discriminate a vertical position with a precision 
of approximately half the distance d  between the two slits. That is, the uncertainty in the 
vertical position must be such that  
 

 Δy < d
2
.   (5.55) 

 
From the wave train uncertainty, the photon wavelength is λ ≈ Δy . According to the 
Heisenberg inequality (i.e., equation (5.49)) there will be an associated uncertainty in the 
vertical momentum of the photon given by 
 

 
 
Δpy ≥


2Δy

= 
d
.  (5.56) 

 
Also, as a photon scatters off an electron it will change the latter’s momentum by 
approximately the same amount (because of the requirement of conserving the total linear 
momentum of the system). If the electron was incident on the slit with a momentum 
px = h λe , according to de Broglie, then there will be an angular deviation Δθ  on its 
path to the detector screen compared to when it does not interact with a photon. We can 
therefore write 
 

 

 

Δθ 
Δpy
px

≥ 
d
⋅ λe
h

≥ λe
2πd

.
  (5.57) 

 
However, we know from equation (5.35) that the first minimum in a Young double-slit 
experiment will happen at  sin θmin( )  θmin = λe 2d , when the system is unperturbed by 
photons incident on the electrons. We then find that, approximately, θmin ≤ Δθ  and the 
interference pattern will be destroyed (or at least strongly affected) by the presence of the 
scattered photons.  
 
We conclude that the determination of which slit the electron goes through destroys the 
wave interference pattern. This is in line with Bohr’s principle of complementarity and 
the statement that quantum mechanical systems evolve as waves and are detected as 
particles. That is, in the experiment considered here scattering photons off electrons is de 
facto a measuring process, which reveals the particle characteristics of electrons and 
destroys any wavelike pattern.        
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5.4 Wave Function, Probability, and the Copenhagen Interpretation of 
Quantum Mechanics 

We saw when considering diffraction gratings or more simply the double-slit experiment, 
in Section 5.2, that we could express the intensity I12 θ( )  of the interference wave 
detected at the screen with equations (5.35) or (5.36). For example, if the incident wave 
were electromagnetic in nature, then this intensity would be related to the square of the 
electric field at the detector through 
 
 I12 θ( ) = ε0c E12

2 θ( ) ,   (5.58) 
 
where    denotes a time average. Considering this equation within the context of wave-
particle duality, where photons are detected at the screen when the intensity of the 
electromagnetic waves is very low, the outcome of the experiment would be as shown in 
Figure 5 with the interference wave pattern slowly emerging out as time elapses and more 
and more photons are detected, as previously discussed. Alternatively, we could equate 
the measured intensity at a given position θ  on the screen with the number of photons 
N θ( )  per unit time per unit area (i.e., the flux) detected. More precisely, we write we 
also have 
 
  I12 θ( ) = N θ( )ω ,   (5.59) 
 
with ω  the angular frequency of the photons.  
 
The comparison of equations (5.58) and (5.59) now makes clearer or previous statement 
that “the probability with which a particle may be detected is proportional to the intensity 
of the interference wave pattern.” The probability in this case would be proportional to 
N θ( )  the number of photons detected (per unit time per unit area), which in turn is 

proportional to the square of the (electromagnetic) wave amplitude E12
2 θ( ) . This 

interpretation seems natural for photons in view of the a priori known existence of the 
“classical” electromagnetic wave associated to them. But what can we say about 
electrons or other massive particles? 
 
For massive particles we rely on the de Broglie’s idea of matter wave, which we now 
denote by ψ r,t( ) , generally composed of several independent waves to form a wave 
packet. From now on we will refer to ψ r,t( )  as the wave function. While the electric 
field E r,t( )  obeys the electromagnetic wave equation (recall the one-dimensional form 
given by equation (1.24) in Chapter 1), the wave function for a particle will obey a 
different wave equation, i.e., the Schrödinger equation. Although we will more formally 
introduce this equation in the next chapter, we list here some the main attributes of the 
wave function. 
 
First, the wave function ψ r,t( )  will in general be complex (in the mathematical sense) 
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with ψ ∗ r,t( )  its complex conjugate. That is, if we write  
 
 ψ r,t( ) =ψ re r,t( ) + jψ im r,t( ),   (5.60) 
 
with two real functions ψ re r,t( )  and ψ im r,t( )  for the real and imaginary parts, 
respectively, then 
 
 ψ ∗ r,t( ) =ψ re r,t( )− jψ im r,t( ).   (5.61) 
 
The amplitude of the wave function varies with position and time, and is given by its 
value at any given point and instant. We define the probability of finding the particle at a 
position r  in a volume d 3r  (for example, d 3r = dxdydz  in Cartesian coordinates) at time 
t  with 
 
 P r,t( )d 3r = ψ r,t( ) 2 d 3r,   (5.62) 
       
where ψ r,t( ) 2 =ψ r,t( )ψ ∗ r,t( )  is the square of the norm of the wave function. Because 
a particle has a probability of one of being detected somewhere in space at any given time 
we must have 
 

 P r,t( )d 3r
−∞

∞

∫ = ψ r,t( ) 2 d 3r
−∞

∞

∫
= 1.

  (5.63) 

 
For example, in the double-slit experiment a particle will be detected somewhere on the 
screen with certainty. It is then said that the wave function is normalized. We thus see 
that the classical picture with which one determines the position of a particle through a 
function of time r t( )  for the coordinates must be abandoned in quantum mechanics, 
where only probabilities can be calculated. This probabilistic interpretation of the wave 
function is due to Max Born (1882-1970).  
 
As will become clearer as we progress in our study, the mathematical formalism based on 
the wave function and the Schrödinger equation has been very successful in accounting 
for quantum phenomena. Indeed, it is safe to state that quantum mechanics is the most 
successful physics theory in accurately predicting the outcomes of experiments. Although 
we cannot properly address this issue at the level of our discussion, it is important to 
understand that there is, however, no universal consensus regarding its interpretation. The 
mainstream interpretation of quantum mechanics is based on the so-called Copenhagen 
Interpretation developed mainly at Bohr’s Institute for Theoretical Physics by Bohr 
himself and Werner Heisenberg (1901-1976) soon after the latter published his theory 
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of quantum mechanics in 1926.3 The Copenhagen interpretation is based on the 
application of the following three elements, which we have already studied in detail, 
 

1. The Heisenberg inequality. 
2. Bohr’s complementarity principle. 
3. Born’s statistical interpretation based on probabilities calculated through the 

square of the norm of the wave function.  
 
This interpretation basically asserts that we should not ask how nature works, but that the 
outcome of measurements is the only physical reality that is available to us. For this 
reason, the Copenhagen interpretation of quantum mechanics is sometimes (sarcastically) 
referred to as the “shut up and calculate!” approach… 

5.5 A First Application – The Particle in a Box 
Let us apply our notions of quantum mechanics to the simple problem of a particle of 
mass m  confined inside a one-dimensional “box” of size   . We want to show that the 
energy of the particle is quantized, and determine the probability of finding the particle at 
a position x  at, say, time t = 0  when in a given state (i.e., energy). To do so, we first 
express the wave function ψ x,t( )  as a wave packet using the Fourier series expansion 
given by equation (5.8)    
 

 
ψ x,0( ) = Ane

jknx

n=−∞

∞

∑

= A0 + Bn cos knx( ) +Cn sin knx( )⎡⎣ ⎤⎦
n=1

∞

∑ ,
  (5.64) 

 
where An , Bn , and Cn  are potentially complex coefficients and we have transformed the 
infinite summation over complex exponentials with a finite summation on sine and cosine 
functions.4 Since the particle is confined to the interior of the box, it must be that the 
probability of finding it outside of it is zero. That is, we have ψ 0,0( ) = 0 , A0 = 0  and, 
because cos 0( ) = 1 , Bn = 0 . It therefore follows that  
 

 ψ x,0( ) = Cn sin knx( )
n=1

∞

∑ .  (5.65) 

 
It is also the case that  ψ ,0( ) = 0 , which imposes the further condition 
 
                                                
3 Erwin Schrödinger (1887-1961) independently published his own version of quantum 
mechanics based on wave functions at approximately the same time (this is the 
formulation we will use). Heisenberg and Schrödinger are widely regarded as the fathers 
of the modern theory of quantum mechanics. 
4 Verify that it is possible to do so, and that Bn = An + A−n  and Cn = j An − A−n( ) . 
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  kn = nπ ,   (5.66) 
 
or 
 

 
 
λn =

2
n
.   (5.67) 

 
We now calculate the energy of the particle using the de Broglie wave-particle duality  
 

 

 

En =
pn
2

2m
= h2

2mλn
2

= n2 h2

8m2
.

  (5.68) 

 
We therefore find that the energy of the particle is quantized with the integer n . 
 
To calculate probabilities for finding the particles at different position inside the box we 
must determine what the Cn  coefficients are, which we do by normalizing the wave 
function. We therefore write, using equation (5.66), 
 

 

 

ψ x,0( ) 2 dx
0



∫ = CnCm
∗ sin nπ x


⎛
⎝⎜

⎞
⎠⎟ sin mπ x


⎛
⎝⎜

⎞
⎠⎟m=1

∞

∑
n=1

∞

∑ dx
0



∫

= 1
2

CnCm
∗ cos n −m( )π x


⎡
⎣⎢

⎤
⎦⎥
− cos n +m( )π x


⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭
dx

0



∫
m=1

∞

∑
n=1

∞

∑
= 1.

  (5.69) 

 
We find, however, that this equation is greatly simplified because both n  and m  are 
integers. That is, we have 
 

 
 

cos n −m( )π x


⎡
⎣⎢

⎤
⎦⎥
dx

0



∫ =
0, for n ≠ m
, for n = m,

⎧
⎨
⎪

⎩⎪
  (5.70) 

 
while 
 

 
 
cos n +m( )π x


⎡
⎣⎢

⎤
⎦⎥
dx

0



∫ = 0   (5.71) 

 
always since n +m ≥ 2 . Combining the last three equations we then find  
 

 
 

Cn
2

n=1

∞

∑ = 2

.   (5.72) 
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Equation (5.72) is a general constraint that relates the amplitudes of the different modes 
(i.e., the waves associated with different values of n ) that compose the wave function. 
Usually, a quantum mechanical system will be “prepared” in a given state or combination 
of states and then is left to evolve before measurements are made. We cannot, at this 
point, say anything about the evolution of a system, as this would require using the 
Schrödinger equation, which we have yet to study. We can still, however, investigate the 
probability density that a particle has to be at a position x  if it is assumed to be in a 
single state of energy En . In that case we write 
 

 

 

ψ x,0( ) =ψ n x( )

= 2

sin nπ x


⎛
⎝⎜

⎞
⎠⎟ .

  (5.73) 

 
The probability density is then simply given by 
 

 

 

P x,0( ) = ψ n x( ) 2

= 2

sin2 nπ x


⎛
⎝⎜

⎞
⎠⎟ .

  (5.74) 

 
We therefore find, as shown in Figure 7 for the first four modes, that the probability of 
finding the particle varies with position in the box.  
 
  

Figure 7 – The first four modes for a 
particle confined to a one-dimensional 
box. The amplitudes of the wave 
functions are on the left and the 
probability densities are on the right. 
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Exercises 
 
7. As we will see in the next chapter, when a quantum mechanical system initially 
prepared at t = 0  in a stationary state ψ n r( )  of energy En  is allowed to evolve according 
to the Schrödinger wave equation, then we find that it does so according to the following 
relation 
 
  ϕn r,t( ) =ψ n r( )e− jEnt  .   (5.75) 
 
Let us then consider a particle of mass m  in a one-dimensional box of length    when the 
initial state is composed of the superposition of two stationary states 
 

 ψ x,0( ) = 1
2

ψ m x( ) +ψ n x( )⎡⎣ ⎤⎦,   (5.76) 

 
with m ≠ n , and allowed to evolve to a time t  where measurements are effected to 
determine the position and energy of the particle. As before, the mathematical form of the 
stationary states is given by  
 

 
 
ψ n x( ) = C sin nπ x


⎛
⎝⎜

⎞
⎠⎟ ,   (5.77) 

 
with C  a real coefficient common to both states. 
 
(a) Calculate the probability density of finding the particle at location x  at time t . Is it 
equal to ψ m x( ) 2 + ψ n x( ) 2⎡

⎣
⎤
⎦ 2 ? Explain. 

 
(b) What is the energy of the particle at time t ? 
 
Solution. 
 
(a) From equations (5.75) and (5.76) we can write 
 

 

 

ψ x,t( ) = 1
2

ψ m x( )e− jEmt  +ψ n x( )e− jEnt ⎡⎣ ⎤⎦

= 1
2
e− jEmt  ψ m x( ) +ψ n x( )e− j En−Em( )t ⎡⎣ ⎤⎦.

  (5.78) 

 
The general form for the probability density of finding the particle at location x  at time t  
is therefore      
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ψ x,t( ) 2 = 1
2
e− jEmt  ψ m x( ) +ψ n x( )e− j En−Em( )t ⎡⎣ ⎤⎦

× 1
2
e jEmt  ψ m

* x( ) +ψ n
* x( )e j En−Em( )t ⎡⎣ ⎤⎦

= 1
2

ψ m x( ) 2 + ψ n x( ) 2 + 2ψ m x( )ψ n x( )cos En − Em( )t ⎡⎣ ⎤⎦{ },
  (5.79) 

 
where we have taken into account the fact that ψ n r( )  is real. Evidently, this probability 

density is different from ψ m x( ) 2 + ψ n x( ) 2⎡
⎣

⎤
⎦ 2 , which is the sum of the densities for 

states m  and n . We find that there is a cross-term that brings oscillations with time at the 
frequency of  En − Em( )  . This is the same type of interference term that we saw in the 
double-slit experiment, for example. 
 
To completely determine the probability density we have to calculate the coefficient C , 
which is accomplished through the normalization of the initial wave function. We thus 
write 
 

 

 

ψ x,0( ) 2 dx
0



∫ = 1
2

ψ m x( ) 2 dx
0



∫ + ψ n x( ) 2 dx
0



∫⎡
⎣⎢

⎤
⎦⎥

= C
2

2
sin2 mπ x


⎛
⎝⎜

⎞
⎠⎟ dx0



∫ + sin2 nπ x


⎛
⎝⎜

⎞
⎠⎟ dx0



∫⎡
⎣⎢

⎤
⎦⎥

= C
2
2
,

  (5.80) 

 
and therefore  
 

 
 
C = 2


.   (5.81) 

 
The probability density of finding the particle at location x  at time t  is therefore   
 

 

 

ψ x,t( ) 2 = 1

sin2 mπ x


⎛
⎝⎜

⎞
⎠⎟ + sin

2 nπ x


⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

+2sin mπ x


⎛
⎝⎜

⎞
⎠⎟ sin nπ x


⎛
⎝⎜

⎞
⎠⎟ cos En − Em( )t ⎡⎣ ⎤⎦

⎫
⎬
⎭
.
  (5.82) 

 
(b) We cannot give a definite value for the energy of the particle at any given time but 
only a probability for the two possible values. That is, we must ask ourselves what are the 
probabilities that the particle be in states m  and n ? For example, the energy of the 
particle will be Em  when it is in state m , etc. From equations (5.77) and (5.78) we find 
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that the two states ψ m x( )  and ψ n x( )  contribute equally to the amplitude of the total 

wave function ψ x,t( ) . Their contributions being 1 2 , the probability of finding the 
particle in either state is the same at 1 2 . Accordingly, the energy of the particle is 
equally likely (at 0.5 probability) to be Em  or En .     
 
 
 


